Communications to the editor

ANSATRIENIN A₂ AND A₃: MINOR COMPONENTS OF THE ANSAMYCIN COMPLEX PRODUCED BY *STREPTOMYCES COLLINUS*

Sir:

The ansatrienins produced by *Streptomyces* collinus ssp. collinus (Lindenbein) strain Tü 1982 represent a new type of benzoquinoid ansamycin antibiotic^{1~3)}. Ansatrienin B, the hydroquinone of A, seems to be identical with mycotrienin, described in 1967⁴⁾. Recently the mycotrienins I and II were isolated from *Streptomyces rishiriensis*^{5~7)}, the given structures are the same previously elucidated for ansatrienin A (1) and B^{1,2)} except the configuration of alanine. In this communication we report the isolation and structural data of two new ansatrienins.

The ansatrienin complex was extracted from the mycelium of *Streptomyces collinus* with acetone¹⁾. The crude product is a mixture of different benzoquinone (A) and hydroquinone (B) components. The ansatrienin complex was oxidized by silver oxide in acetone or FeCl₃ solution in ethyl acetate. The A-components were easily separated on silica gel (PTLC) with chloroform methanol (96: 4). Two fractions were collected, yielding 1 (27 mg/liter culture broth) and a mixture of minor components. The latter were

Table 1. Rf values (TLC, silica gel) of the ansatrienins.

A (1)	A (2)	A (3)
A (1)	$A_2(\mathbf{z})$	$A_3(3)$
0.37	0.28	0.23
0.27	0.25	0.22
0.47	0.45	0.41
	A (1) 0.37 0.27 0.47	$\begin{array}{c cc} A (1) & A_2 (2) \\ \hline 0.37 & 0.28 \\ 0.27 & 0.25 \\ 0.47 & 0.45 \end{array}$

then applied to a silica gel column (HPLC) and eluted with a mixture of *n*-hexane - ether - acetone (5:4:1). Ansatrienins A_2 (2) and A_3 (3) were obtained in equal amounts (4 mg/liter culture broth) as yellow amorphous powder. The Rf values are given in Table 1.

The new ansatrienins are isomers and differ only slightly in their physico-chemical properties (Table 2). The IR and UV spectra are very similar to those of ansatrienin A (1) indicating the same chromophoric systems¹⁾. 2 and 3 have a smaller molecular formula than 1, differing by C_2H_2 . The alteration is located in the *N*-acyl alanine side chain of 1. This derives from the following data: 1) EI-MS (high resolution) reveals the molecular ion at m/z 610, which loses $C_8H_{15}NO_3$ (173) giving the fragment peak at m/z437 ($C_{28}H_{31}NO_5$). This key fragment also was found in the mass spectrum of 1, there, however, formed by loss of *N*-cyclohexylcarbonyl alanine $C_{10}H_{17}NO_3$ (199) from M^{+ 1)}. 2) Reduction of

Table 2. Physico-chemical properties of ansatrienins A_2 and A_3 .

	A ₂ (2)	A ₈ (3)
Melting point	115°C (decomp.)	117°C (decomp.)
$[\alpha]^{20}_{ m D}$	+115.7° (<i>c</i> 0.75, CHCl ₃)	+119.4° (c 0.65, CHCl ₃)
Elemental analysis (%) Found	C 67.05, H 7.74, N 4.68	C 66.42, H 7.38, N 4.40
Calcd.	C 66.87, H 7.59, N 4.59	C 66.87, H 7.59, N 4.59
Molecular formula	$C_{34}H_{48}N_2O_8$	$\mathrm{C_{34}H_{48}N_2O_8}$
EI-MS: M ⁺ (%)	<i>m</i> / <i>z</i> 610.3254 (1%)	<i>m</i> / <i>z</i> 610.3254 (4%)
UV (MeOH): $\lambda_{\max}(\varepsilon)$	387 (1800), 279 (37100), 271	the same
	(46200), 264 sh, 230 nm (24400)	
UV (MeOH/NaOH): $\lambda_{max}(\varepsilon)$	481 (1900), 278 (43500), 269	the same
	(48900), 261 nm (43600)	
IR (KBr)	1730, 1710, 1662 sh, 1650, 1630 sh,	the same
	1608 cm ⁻¹	
CD (MeOH): λ_{max} ([θ] ²¹ ·10 ⁻⁴)	284 (-15.0), 278 sh (-7.4),	284 (-11.6), 278 sh (-5.6),
	264 (+13.0), 258 nm (+16.0)	264 sh (+10.8), 258 nm (+12.8)

2 and 3 with LiAlH₄ in tetrahydrofuran (1 hour/ -28°C) afforded ansatrienol A (4) which is completely identical with the compound isolated from $1^{2,3}$. 3) Hydrolysis of 2 and 3 in aqueous alkaline solution⁸⁾ gave 2-methylbutyric acid and isovaleric acid, respectively, which were separated on Dowex 50WX8 and identified by their retention time (GC, 60/80 Carbopack C - 0.3% Carbowax 20 M - 0.1% H₃PO₄, 150°C) in comparison with authentic samples.

The ¹H NMR spectrum of **2** indicates the presence of alanine by signals at δ 1.45/4.40 for 2'-CH₈/2'-H and at δ 5.89 for NH. When compared with the spectrum of **1** the signals for the cyclohexyl protons are replaced by those for a 2-methylbutyryl residue: δ 0.92 (t, 3H), 1.13 (d, 3H), 1.65 (m, 2H) and 2.22 (m, 1H). The corresponding signals for **3** (Fig. 1) appeared at δ 0.95 (d, 6H) and 2.06 (m, 3H) suitable for iso-

Table 3. ¹³C NMR data of the *N*-acyl alanine side chain in CDCl₈.

Assignment	1	2	3
C-1′	172.7 (s)	172.6 (s)	172.6 (s)
C-2'	48.7 (d)	48.6 (d)	48.7 (d)
2'-CH ₃	17.3 (q)	17.5 (q)	17.4 (q)
C-3'	176.5 (s)	176.7 (s)	172.9 (s)
C-4′	44.7 (d)	42.5 (d)	45.3 (t)
4'-CH ₃		17.1 (q)	
C-5′	29.6 (t)	27.2 (t)	26.2 (d)
C-6'	25.6 (t)	11.8 (q)	22.4 (q)
C-7′	25.6 (t)		22.4 (q)

50.5 MHz, δ values in ppm relative to internal TMS.

valeryl. The remaining ¹H NMR signals derive from the ansa ring protons, the deviation from the δ values given for 1^{2} is less than 0.1 ppm. The ¹⁸C NMR data are in agreement⁹ with the assigned structure elements (Table 3); the chemical shifts of the ansa ring carbons are in accordance with the data given for 1^{1} .

The ansatrienins are active against fungi. The weak activity of the A-components against Grampositive bacteria is antagonized by cysteine¹⁾. **1** and **2** show comparable activity while **3** is considerably more active against fungi (Table 4). To investigate the role of L-alanine with respect to biological activity, ansatrienol A (4) was esterified directly with cyclohexylcarboxylic acid in acetone (DCC/dimethylaminopyridine, -20° C,

Fig. 1. ¹H NMR spectrum of ansatrienin A₃ (3) in CDCl₃ at 200 MHz.

Test organism	1 (1 mg/ml)	2 (1 mg/ml)	3 (0.5 mg/ml)
Botrytis cinerea	32	33	32
Mucor hiemalis 179/180	10	8	11.5
Mucor miehei	15	12.5	17
Mucor mucedo	15		15
Mucor parvisporus	20	17	23
Trametes zonata	28	29	33
Saprolegnia asterophora	23	24	29
Geotrichum candidum		8	12

Table 4. Antifungal activity of the ansatrienins (agar diffusion method, 6 mm paper disk, inhibitory diameter in mm).

90 minutes) and isovaleric anhydride in pyridine (20°C, 24 hours), respectively. We obtained 11cyclohexylcarbonyl-ansatrienol A (5, 66%) and 11-isovaleryl-ansatrienol A (6, 54%) together with the corresponding 11,13-diacyl derivatives³⁾. When compared with 4, the monoesters show a new IR ester band at 1728 cm⁻¹. The ¹H NMR spectra (CDCl₃, 200 MHz) give evidence for one ester side chain in 5 and 6. The paramagnetic shift of 11-H (δ 3.80 in 4 to δ 4.89 in 5 and δ 4.94 in 6, respectively) confirms that the ester is attached at the corresponding hydroxyl group (11-OH). 13-H shows a small upfield shift (δ 4.84~ 4.40). 5 and 6 are inactive against the tested fungi and bacteria indicating that L-alanine is an essential part of the ansatrienins. We assume that the structure-activity relationship of the ansatrienins is quite different from the maytansinoids.10)

Acknowledgement

We thank the Deutsche Forschungsgemeinschaft for financial support.

Günter Lazar

Hans Zähner

Institut für Biologie II, Lehrstuhl Mikrobiologie I, Universität Tübingen

Auf der Morgenstelle 28, D-7400 Tübingen, F.R.G MANFRED DAMBERG AXEL ZEECK*

To whom communications should be addressed.

Institut für Organische Chemie, Universität Göttingen, Tammannstr. 2, D-3400 Göttingen, F.R.G.

(Received September 27, 1982)

References

- WEBER, W.; H. ZÄHNER, M. DAMBERG, P. RUSS & A. ZEECK: Stoffwechselprodukte von Mikroorganismen. 201. Ansatrienin A und B, fungistatische Antibiotica aus *Streptomyces collinus*. Zbl. Bakt. Hyg., I. Abt. Orig. C 2: 122~139, 1981
- DAMBERG, M.; P. RUSS & A. ZEECK: Die Konstitution der fungistatischen Ansamycin-Antibiotica Ansatrienin A und B. Tetrahedron Lett. 23: 59~62, 1982
- DAMBERG, M.: Isolierung, Strukturaufklärung und Derivatisierung neuer Ansamycin-Antibiotica aus Streptomyceten. Ansatrienine und Naphtomycin C. Thesis Univ. Göttingen, 1982
- CORONELLI, C.; R. C. PASQUALUCCI, J. E. THIE-MANN & G. TAMONI: Mycotrienin, a new polyene antibiotic isolated form *Streptomyces*. J. Antibiotics 20: 329 ~ 333, 1967
- 5) SUGITA, M.; K. FURIHATA, H. SETO, N. ÖTAKE & T. SASAKI: The structures of mycotrienins I and II, a novel class of ansamycin antibiotic. Agric. Biol. Chem. 46: 1111~113, 1982
- 6) SUGITA, M.; Y. NATORI, T. SASAKI, K. FURIHATA, A. SHIMAZU, H. SETO & N. ÕTAKE: Studies on mycotrienin antibiotics, a novel class of ansamycins. I. Taxonomy, fermentation, isolation and properties of mycotrienins I and II. J. Antibiotics 35: 1460~1466, 1982
- SUGITA, M.; T. SASAKI, K. FURIHATA, H. SETO & N. ŌTAKE: Studies on mycotrienin antibiotics, a novel class of ansamycins. II. Structure elucidation and biosynthesis of mycotrienins I and II. J. Antibiotics 35: 1467~1474, 1982
- ASAI, M.; E. MIZUTA, M. IZAWA, K. HAIBARA & T. KISHI: Isolation, chemical characterization and structure of ansamitocin, a new antitumor ansamycin antibiotic. Tetrahedron 35: 1079~ 1085, 1979
- COUPERUS, P. A.; A. D. CLAQUE & J. P. VAN DONGEN: Carbon-13 chemical shifts of some model carboxylic acids and esters. Org. Mag. Reson. 11: 590~597, 1978
- KOMODA, Y. & T. KISHI: Maytansinoids. Medicinal Chemistry. Vol. 16, Anticancer Agents Based on Natural Product Models. *Ed.* by. J. M. CASSADY & J. D. DOUROS, pp. 353~390, Academic Press, New York, 1980